ELASTIC COMPLIANCE AND STIFFNESS CONSTANTS

\square Hookes law states that for sufficiently small deformations the strain is directly proportional to the stress
\square The strain components are linear functions of the stress components
\square The stress components are linear of the strain components
\square The quantities $\mathbf{s}_{11} \mathbf{S}_{12}$ - elastic compliance constants or elastic constants
$\square C_{11} C_{12}$ - elastic stiffness constants or moduli of elasticity
\square The s's have the dimensions of [area]/ [force] or [volume] / [energy]
\square The c's have the dimensions of [force]/[area] or [energy] /[volume]
Elastic Energy Density:
\square The 36 constants may be reduced in number by several considerations
\square The elastic energy density U is a quadratic function of the strains
\square In approximation of hooke's law we write

$$
U=1 / 2 \sum \Sigma C \lambda \mu e \lambda e \mu
$$

\square The stress components from derivative of U with respect to the associated strain component
\square The stress $X x$ applied to one face of a unit cube the opposite face being held at rest
\square The 36 elastic stiffness constants are reduced to 21

Elastic Stiffness Constants Of Cubic Crystals:

\square The number of independent elastic stiffness constants is reduced fuether if the crystal possesses symmetry elements
\square The cubic crystal there are only 3 independent stiffness constants
\square The minimum symmetry requirement for a cubic structure is the existence of four three-fold rotation axes
\square The axes are in the [111] and equivalent directions
\square The effect of rotation of about $2 \pi / 3$ about these four axes is to interchange the x, y, z
\square A rotation will change the sign of the term because $e_{x y}=-e x(-y)$

Bulk modulus \& compressibility:

thank you

